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Trapping and recycling. Statistical properties

In this chapter, we introduce two basic statistical distributions suited to an anal-
ysis of the classical inhomogeneous random walk that we introduced at the end of
Chapter 2 for modelling non-ergodic cooling. These two distributions will be used
throughout the book for deriving physically relevant quantities. The fact that they
can be broad, with power-law tails, will also demonstrate from the beginning that
Lévy statistics is naturally involved in non-ergodic cooling.

We begin in Section 3.1 by describing the evolution of the atom as a sequence of
trapping processes of duration τ alternating with recycling processes of duration
τ̂ . This description will yield both physical insight and convenient calculations
provided only two probability distributions are known, the distribution P(τ ) of
trapping times and the distribution P̂(τ̂ ) of recycling times. In order to derive
P(τ ) and P̂(τ̂ ), we then introduce in Section 3.2 simple physical models of the
inhomogeneous jump rate. We then calculate P(τ ) in Section 3.3 and P̂(τ̂ ) in
Section 3.4, using random walk techniques.

3.1 Trapping and recycling regions

As explained at the end of Chapter 2, we replace the microscopic quantum de-
scription of the evolution of the atom by a simpler description, where we consider
a fictitious classical particle, completely characterized by its momentum p, and
making a random walk with a step of rms length 
p of the order of h̄k. This
random walk takes place in a space that can have any dimension D = 1, 2, 3.
Subrecoil cooling is characterized by an inhomogeneous jump rate, depending on
the position p in the momentum space.

The observation of the random walks of individual atoms (Fig. 2.1) suggests
distinguishing two regions in momentum space, a ‘trapping region’ around p = 0
and a ‘recycling region’ far from p = 0. Indeed, when an atom reaches p � 0
states, it can remain ‘trapped’ for a relatively long time. In some cases it stays
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Fig. 3.1. Trapping times τi and recycling times τ̂i . The atom returns to the trap at times
R1, R2, . . . , and exits the trap at times E1, E2, . . . (see Section 5.1.2).

there till the end of the laser–atom interaction. In other cases it scatters a photon
before the laser is switched off which usually kicks it away from the p � 0 region.
Therefore, the atom will scatter photons again undergoing a random walk in p-
space. This random walk will eventually lead the atom back to the trapping region
again. Thus the atoms being kicked out of the trapping region are not lost, they
are rather ‘recycled’ since the random walk process gives them other opportunities
to reach long-lived small-p states. We introduce a momentum trap size ptrap to
separate the two regions

trapping region: p ≤ ptrap, (3.1a)

recycling region: p ≥ ptrap. (3.1b)

The trap size ptrap is in principle arbitrary. We will indeed see that the physical
observables no longer depend on ptrap in the limit θ → ∞. This trap size will be
chosen conveniently below to simplify further calculations. In particular, ptrap will
be taken to be smaller than the width p0 of the jump rate dip (see Section 3.2):

ptrap < p0. (3.2)

The evolution of each atom now appears as a sequence of trapping periods
of durations τ1, τ2, τ3, . . . alternating with recycling periods of durations τ̂1, τ̂2,
τ̂3, . . . (see Fig. 3.1). The τ̂i ’s are usually called ‘first return times’.

During the interaction time θ , an atom is trapped N times, N being possibly
different for each atom. During θ , the same atom has therefore been recycled also
N times or N ± 1 times depending on whether the atom was initially (and finally)
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in the trap. As we will be interested in long times θ , we have N 	 1 and therefore,
we consider N � N ± 1. If one disregards the last event1 (either a trapping event
or a recycling event) which overlaps the time t = θ , the interaction time θ writes
as the sum of the total trapping time TN and the total recycling time T̂N :

θ � TN + T̂N , (3.3)

with

TN =
N∑

i=1

τi , (3.4a)

T̂N =
N∑

i=1

τ̂i . (3.4b)

The sum TN is the total trapping time, whereas T̂N is the total recycling time, for
an interaction time θ .

Both the τi ’s and the τ̂i ’s are independent random variables. Therefore, to study
the statistical properties of the sums TN and T̂N , one can think of using Central
Limit Theorems (CLTs): from the probability distributions P(τ ) (or P̂(τ̂ )) of
individual events, one infers the probability distribution PN (TN ) (or P̂N (T̂N )) of
the sums.

A key point of the present work is that P(τ ) is in many cases a ‘broad’ distribu-
tion, i.e. a distribution decaying so slowly at large τ that the second moment 〈τ 2〉
and even the first moment 〈τ 〉 are formally infinite (the same is true of P̂(τ̂ )). This
could be suspected from the graphical aspects of the Monte Carlo random walks
of Fig. 2.1 which tend to generate very long trapping times. Usually, the finiteness
of the first two moments ensures, via the CLT, that the sums TN are distributed
according to Gaussian laws (‘normal’ distributions) for large N . Here, the usual
CLT is not directly applicable since 〈τ 2〉 (or even 〈τ 〉) diverges. On the other hand,
if P(τ ) behaves as a power law, τ−(1+µ) for large τ (which is the case here), one
can use the generalized CLT of Lévy and Gnedenko. The distributions PN (TN ) no
longer tend to normal distributions at large N but rather to ‘Lévy distributions’.

As will be discussed below, Lévy distributions differ qualitatively from the
normal distribution. For this reason, the appearance of Lévy statistics in subrecoil
cooling has dramatic physical consequences. Indeed, the divergence of the average
trapping time will be shown to be deeply related to the main features of the cooling
mechanism, such as non-ergodicity. Thus non-ergodic cooling will appear to be
qualitatively different from cooling with friction forces. In order to carry out

1 This last event will be given a correct treatment in the quantitative calculations presented in subsequent
chapters.
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precise calculations, one needs to derive first the distributions P(τ ) and P̂(τ̂ )

of elementary events. This requires modelling of the inhomogeneous momentum
random walk.

3.2 Models of inhomogeneous random walks

The distributions P(τ ) and P̂(τ̂ ) are determined by the random walk in momentum
space. This random walk itself depends on the inhomogeneous jump rate R(p)

and on the possible existence of friction forces. In this section, we will introduce
three models of inhomogeneous random walks that share the same features in the
trapping region and that differ only in the recycling region. Note that we consider
the random walk to be isotropic. Therefore, the jump rate R(p) depends only on
the atomic momentum modulus p = ‖p‖.

3.2.1 Friction

Before discussing both regions, we need a simple description of the friction forces
that might be present. In usual laser cooling, the cooling effect of friction forces
combined with the heating effect of spontaneous emission generates an approx-
imately Gaussian stationary momentum distribution of half-width pmax. In op-
timized low-intensity Doppler cooling, for instance, one has pmax � (Mh̄�)1/2

where �−1 is the lifetime of the excited state. The friction forces vanish for p → 0.
Moreover the Gaussian momentum distribution decays very rapidly for p > pmax.
Therefore, it is reasonable to model friction forces very simply by a perfect ‘wall’
at pmax in momentum space. For p < pmax, we consider that the atoms diffuse
freely as if there was no friction, but no atomic momentum is allowed to be larger
than pmax. In other words, the real random walk with friction that explores in
principle all the momentum space is, for our purposes, efficiently modelled by a
standard (frictionless) random walk confined to a sphere of radius pmax.

3.2.2 Trapping region

We can now establish the modelling of R(p) in the trapping region, i.e. in the
vicinity of p = 0. In all cases of non-ergodic cooling, R(p) presents a dip of width
p0 around p = 0 which we assume to behave as a power law:

R(p) = 1

τ0

(
p

p0

)α

, p < p0. (3.5)

The case of VSCPT corresponds to α = 2 [AAK89] (see Appendix A). The
flexibility of Raman cooling [KaC92] allows, in principle, any value of α. Up to
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now, Raman cooling experiments have used configurations with α = 4 and α = 2
[RBB95]. Note that the friction forces which might be present are assumed to play
no role for p < p0 as p0 will always be taken smaller than pmax. Although the
function R(p) of eq. (3.5) obviously depends on a single parameter τ0 pα

0 , we have
introduced the value p0 of the momentum at which the jump rate R(p) saturates
and takes the value τ−1

0 (Fig. 3.2). The parameter p0 then characterizes the width
of the dip of R(p) around p = 0, while τ−1

0 is the jump rate at saturation.
Spurious mechanisms can cause the cancellation of R(p) at p = 0 to be imper-

fect. In these cases, eq. (3.5) must be replaced by

R(p) = R0 + 1

τ0

(
p

p0

)α

, p < p0. (3.6)

In most of this book we will only consider that R0 = 0. The cases R0 > 0, which
can be important for practical applications, can easily be taken into account with
our approach. This is done in Section 7.4.

3.2.3 Recycling region

Consider now the possible models for the recycling region, i.e. the region p > p0

out of the dip. In the first model, the jump rate is assumed to be constant for all
p > p0 and the atomic momentum is confined to a sphere of radius pmax:

confined model: R(p) = 1

τ0
, p0 ≤ p ≤ pmax. (3.7)

This confined model describes faithfully most situations of friction-assisted subre-
coil cooling [MaA91, SHP93, WEO94, MDT94, LBS94, LKS95, HLO00].

In the second model, the jump rate is also assumed to be constant for all p > p0

but the atomic momentum random walk is allowed to go to infinity (pmax → ∞):

unconfined model: R(p) = 1

τ0
, p0 ≤ p. (3.8)

This unconfined model is well suited to cases in which the atomic momentum
diffusion is frictionless and when the optical Doppler effect, which shifts the atoms
out of resonance with the cooling lasers at large p, can be neglected.

The third model assumes unconfined momentum diffusion and takes into ac-
count the decrease of the jump rate due to the Doppler effect:

Doppler model: R(p) = 1

τ0
, p0 ≤ p ≤ pD, (3.9a)

R(p) = 1

τ0

(
pD

p

)2

, pD ≤ p, (3.9b)
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Fig. 3.2. Models of inhomogeneous random walks.

where the characteristic momentum pD is defined by kpD/M = �/2 (k is the
laser wave number). The previous equations for R(p) are obtained by taking the
small-p and the large-p limits of the Lorentzian �2/(�2 + 4k2 p2/M2), describing
the decrease of the jump rate due to the Doppler shift kp/M (see Appendix A,
p. 152). This Doppler model describes faithfully the original one-dimensional
VSCPT scheme with σ+/σ− polarization [AAK88].

A fourth model could be introduced, with absorbing walls at p = pabs. These
absorbing walls would account for momentum dependent forces that appear for
p > pmax in some experiments [LBS94] that tend to push the atoms towards larger
momenta, unlike friction forces. This undesirable effect can in principle be reduced
by an adequate choice of experimental parameters. It will therefore not be studied
here.
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3.2.4 Momentum jumps

The last ingredient of the random walks is the probability distribution of the
momentum jumps due to spontaneous emissions. We consider that positive and
negative jumps occur with the same probability (except for p = pmax in the
confined model, cf. the above discussion of friction). The probability distribution
of jumps spans an interval of approximate size 2
p where 
p is the standard
deviation of the jump lengths, the only parameter of this distribution that will
be needed in this book. In most cases, 
p is of the order of the single photon
momentum h̄k:


p � h̄k. (3.10)

One can calculate 
p precisely for specific laser cooling situations (see e.g. Sec-
tion A.1.2.6, for one-dimensional σ+/σ− VSCPT and Section A.2.2.3, for one-
dimensional Raman cooling).

3.2.5 Discussion

To sum up, physical considerations have led us to introduce three models for the
inhomogeneous momentum diffusion. These models depend essentially on the
parameters α, p0 and τ0, and possibly on R0, pmax and pD. They may appear to
be oversimplifications of the atomic diffusion. However, as discussed below, they
do grasp the essential features of subrecoil cooling. Their relevance is intimately
connected to the generalized CLT: as shown in Chapter 4, the distributions of the
sums TN and T̂N at large N depend only on the asymptotic behaviour of P(τ ) and
P̂(τ̂ ) when these distributions are broad. So the only requirement on the models
for predictions in the long time regime (large N ) is that they describe correctly the
asymptotic behaviours of P(τ ) and P̂(τ̂ ). Therefore, these simplified models will
allow exact analytical predictions in the long time limit.

3.3 Probability distribution of the trapping times

3.3.1 One-dimensional quadratic jump rate

We first consider the case of a one-dimensional random walk along the px axis,
with a quadratic variation of the jump rate around px = 0:

R(px) = 1

τ0

(
px

p0

)2

= 1

τ0

(
p

p0

)2

. (3.11)

Bearing in mind that the real motion takes place in a three-dimensional space, the
lengths of the steps of the random walk are not all equal, but rather random between
� −
p and � +
p, corresponding to the projection of the recoil momentum (of
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random direction) onto the x axis. All the points of the px axis can then be explored
by the diffusing atom. If we now make the further assumption that the trap size ptrap

is small compared to the step length

ptrap � 
p, (3.12)

then all the points in the trapping region are reached with the same probability
(‘uniform sprinkling’). The probability density ρ(px) that an atom entering the
trap of width 2ptrap reaches the momentum px is therefore approximated as:

ρ(px) = 1

2 ptrap
. (3.13)

The probability for a trapped atom making a momentum jump to fall back into the
trap is of the order of ptrap/
p, which is negligibly small because of the inequality
(3.12). The trapping time τ(px) for an atom landing in the trap at px is therefore
equal to the time spent at px , which is directly related to the jump rate R(px) of
eq. (3.11). In other words, the jump rate R(px) is also the rate of escape from the
trap, for the atoms with |px | < ptrap.

3.3.1.1 Deterministic model

Let us first assume, for simplicity, that an atom entering the trap with a momentum
px remains there for a well defined, deterministically fixed, time τ(px) given by:

τ(px) = 1

R(px)
= τ0

(
p0

px

)2

(3.14)

(in reality, the time τ is itself random, distributed according to an exponential law
of mean 1/R(px); we shall take this into account below, see eq. (3.19)). The
trapping times τ(px) are therefore distributed (Fig. 3.3) between a minimum value
τtrap (corresponding to px = ±ptrap)

τtrap = τ(ptrap) = τ0

(
p0

ptrap

)2

(3.15)

and infinity (corresponding to px = 0), with a probability distribution P(τ ) such
that

P(τ ) |dτ | = 2ρ(px) |dpx | (3.16)

which means that all events either between px and px + dpx , or between −px and
−px − dpx , contribute to trapping times between τ and τ + dτ , where |dτ | and
|dpx | are related by the equation

|dτ |
|dpx | = |τ ′(px)| = 2τ0

p2
0

|px |3
(3.17)
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Fig. 3.3. Trapping times τ(px ) for px > 0.

(see eq. (3.14) and Fig. 3.3). Inserting eq. (3.13) and eq. (3.17) into eq. (3.16), we
then find the distribution of the trapping times to be

P(τ ) = τ
1/2
trap

2τ 3/2
, τ ≥ τtrap, (3.18)

with τtrap defined by eq. (3.15).
This probability distribution, shown in Fig. 3.4, is a broad function with slowly

decreasing tails. The probability of observing large values of τ is so important
that the average value of τ is infinite. This unusual behaviour is precisely at the
root of the efficiency of the subrecoil cooling mechanisms, which are based on the
existence of very long trapping times around px = 0.

3.3.1.2 Exponential model

The τ−3/2 behaviour of the distribution of the trapping times for large τ is the
main result of the above calculation. This result is not substantially modified if one
considers a more realistic model, where the trapping time for a given momentum
is an exponential random variable rather than a deterministic variable. If R(px) is
the jump rate associated with a trapped momentum px , the conditional distribution
of the trapping times for a well defined px is

P(τ | px) = R(px) exp (−R(px) τ ). (3.19)
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Fig. 3.4. Distribution P(τ ) (deterministic model).

The total probability distribution of the trapping times is then

P(τ ) =
∫ +ptrap

−ptrap

P(τ | px) ρ(px) dpx . (3.20)

Using the expression for the jump rate (eq. (3.11)) and the uniform distribution for
entering the trap at momentum px (eq. (3.13)), one finds, after changing variables
to u = p2

xτ/(p2
0τ0):

P(τ ) = 1

2

τ
1/2
trap

τ 3/2
γ

(
1 + 1

2
,

τ

τtrap

)
, (3.21)

where γ (β, x) is the incomplete Gamma function defined by

γ (β, x) =
∫ x

0
e−uuβ−1 du. (3.22)

Taking the limit τ → ∞, one has

γ

(
1 + 1

2
,

τ

τtrap

)
→ �

(
1 + 1

2

)
= 1

2
�

(
1

2

)
.

The asymptotic behaviour of P(τ ) is thus given by:

P(τ ) �
τ	τtrap

�(1/2)

2

τ
1/2
trap

2τ 3/2
(3.23)

where �(1/2) = √
π . For finite values of τ , there are subleading correction terms

which can be systematically calculated (see eq. (6.5.32) in [AbS70]).
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3.3.2 Generalization to higher dimensions

If we now consider a random walk in a D-dimensional momentum space, with a
quadratic jump rate still given by eq. (3.11), we can easily generalize the above
results. Let us again assume that, for an atom entering the trap, the probability to
land anywhere in the trapping volume VD(ptrap) is uniform. The volume VD(p) of
the hypersphere of radius p reads:

VD(p) = CD pD, (3.24)

where CD is the volume of the unit sphere in D dimensions:

C1 = 2, C2 = π, C3 = 4π/3. (3.25)

The probability ρ(p) dp, for an atom landing in the trap, of landing at a momentum
of modulus between p and p + dp is simply given by:

ρ(p)dp = dVD(p)

VD(p)
= SD pD−1 dp

VD(ptrap)
, (3.26)

where SD pD−1 is the surface of a hypersphere of radius p (SD = DCD):

S1 = 2, S2 = 2π, S3 = 4π. (3.27)

Thus, one obtains

ρ(p) = DpD−1

pD
trap

. (3.28)

Calculations similar to those of the one-dimensional case then lead to

P(τ ) �
τ	τtrap

A Dτ
D/2
trap

2τ 1+D/2
, (3.29)

where A is a numerical factor which depends on whether one assumes a determin-
istic (see eq. (3.14)) or an exponential (see eq. (3.19)) relation between τ(p) and
R(p). In the former case, A = 1, while in the latter case, A = (D/2) �(D/2).
Note that as soon as D > 2, the average trapping time is finite (although the
variance of the trapping time still diverges if D < 4).

3.3.3 Generalization to a non-quadratic jump rate

If we consider more general situations where the jump rate varies as pα (cf. eq.
(3.5)), very similar calculations lead to the following result:

P(τ ) �
τ	τtrap

Aµ

µτ
µ
trap

τ 1+µ
with µ ≡ D

α
, (3.30)
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where the characteristic trapping time τtrap is defined as:

τtrap = τ0

(
p0

ptrap

)α

. (3.31)

The numerical constant Aµ is still equal to one in the deterministic case, and to
Aµ = µ�(µ) in the exponential case.

3.3.4 Discussion

We have thus shown that the asymptotic behaviour of the trapping time distribution
P(τ ) at large τ decays as a power law with an exponent µ given by the ratio of
the dimension D of the momentum space to the exponent α characterizing the
p-dependence of the jump rate R(p) around the trapping point. This power-law
distribution is conveniently written as

P(τ ) �
τ	τb

µτ
µ

b

τ 1+µ
(3.32)

with

µ ≡ D

α
and τ

µ

b ≡ Aµτ
µ
trap = Aµ

(
p0

ptrap

)D

τ
µ

0 , (3.33)

where Aµ is defined by

deterministic case: Aµ = 1, (3.34a)

exponential case: Aµ = µ�(µ). (3.34b)

Note that, in the deterministic case, the expression (3.32) is exact for all τ ≥ τtrap.
When µ ≤ 2, the variance of τ does not exist, and the usual (Gaussian) CLT does

not apply (see Chapter 4). When µ ≤ 1 the tails of the probability distribution are
so broad that the average value of τ fails to converge. Such a situation is a priori
favourable for efficient cooling, since it corresponds to the case where very long
trapping times around p = 0 have a substantial probability.

In such situations, however, one cannot apply usual statistical treatments. In
particular, when µ ≤ 1, the total trapping time TN is clearly not proportional to
N 〈τ 〉 (where N is the number of trapping events), since 〈τ 〉 is infinite. One thus
has to resort to the generalized CLT of Lévy and Gnedenko (see Chapter 4). In the
intermediate case 1 < µ ≤ 2, the average trapping time is finite and differs from
τtrap by a factor which diverges as µ tends to one from above. For example, in the
deterministic case, one gets:

〈τ 〉 = µ

µ − 1
τtrap. (3.35)
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In order to have µ as small as possible, which is a priori favourable for efficient
cooling, the exponent α must be large: this corresponds to ‘flat’ behaviour of the
jump rate R(p) around the trapping point. On the other hand, when the number D
of dimensions increases, the tails of P(τ ) decay faster, simply because of the phase
space relation (eq. (3.28)), which gives less weight to small values of p when the
space dimension increases.

To make the connection with real subrecoil cooling schemes (Appendix A),
notice that the initial VSCPT scheme in one dimension corresponds to a broad
distribution where 〈τ 〉 is infinite (µ = 1/2), while in the three-dimensional case
(µ = 3/2) the average of τ does exist. The two-dimensional situation corresponds
to the marginal case µ = 1. Raman cooling corresponds to α � 4 when using
Blackman pulses and to α = 2 when using square time pulses [RBB95].

3.4 Probability distribution of the recycling times

3.4.1 Presentation of the problem: first return time in Brownian motion

In contrast to a trapping period, which consists of a single event (the atom is
trapped at a given p), a recycling period is a random walk composed of many steps
out of the trap. We characterize such a composite recycling period by a single
number τ̂ , which is the recycling time, i.e. the time needed to return to the trapping
region. The aim of this section is to establish the probability distribution P̂(τ̂ )

of the recycling times τ̂ . This is in fact a ‘first return time’ problem, a standard
problem in Brownian motion theory: τ̂ can be identified as the time needed for the
random walk in momentum space to return to the origin.

It is well known that this problem depends crucially on the dimension of the
space where Brownian motion takes place. Indeed, in the one-dimensional case,
the probability that a random walker returns to the origin is equal to one (actually,
the random walker returns infinitely often to its starting point). On the contrary,
in dimensions greater than D = 2, there is a non-zero probability that the walker
never returns to its starting point.

Another important parameter controlling the first return time is the average dura-
tion 1/R(p) of the steps of the random walk. We calculate below the recycling time
distributions P̂(τ̂ ) for the three models introduced in Section 3.2. In the unconfined
model (Section 3.4.2), R(p) is constant outside the trap, and the motion is the usual
random walk with a uniform jump rate. In the Doppler model (Section 3.4.3),
R(p) decreases for large values of p; recycling walks reaching large values of p
are slowed down, and large recycling times are obviously more probable than in
the unconfined model: we therefore expect a broader distribution for the recycling
times τ̂ . On the contrary, in the confined model (Section 3.4.4), the random walk
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motion is bounded by ‘hard walls’, and one expects that large recycling times are
scarce, leading to a relatively narrow distribution P̂(τ̂ ).

3.4.2 The unconfined model in one dimension

We first recall here a few results for the problem of an atom making a one-
dimensional uniform random walk on the px axis (px is the algebraic position
which takes values between −∞ and +∞, in contrast to its modulus p = |px |
which is always positive). The average value of the elementary step is zero
(isotropic random motion) and its variance 
p2 is independent of the position px .
The average time between two successive steps is finite and equal to τ0 (unconfined
model). At time t = 0 the atom leaves the trapping region around the origin
(p ≤ ptrap with ptrap � 
p). We want to determine the probability distribution
P̂(τ̂ ) of the time t = τ̂ at which the system returns for the first time to the trapping
region.

Let us start by determining the probability distribution P1(n) of the number n
of steps needed to return for the first time to the trap. At this stage, working only
in terms of the number of steps, we deal with a purely geometric problem and the
existence of long-lived trapping states for p < p0 plays no role. In order to solve
this problem, we introduce the probability Ptrap(n) that the atom is in the trap after
n steps, independently of the number of previous returns. This probability is the
integral over the trapping region (−ptrap ≤ px ≤ ptrap) of the probability density
P(px , n) of px after n steps. For a standard random walk, it is well known that
after a large number n of steps, the distribution of px is Gaussian:

P(px , n) = 1√
2πn 
p2

exp

(
− p2

2 n 
p2

)
. (3.36)

Using the condition ptrap � 
p, one thus finds

Ptrap(n) =
∫ ptrap

−ptrap

dpx P(px , n) = 2 ptrap√
2πn 
p

. (3.37)

We now want to relate Ptrap(n) to the first return distribution P1(n). The atom
can be in the trap after n steps, either for the first time (with probability P1(n)),
or because it was already in the trap after n′ < n steps (with probability Ptrap(n′)),
left the trap at the step n′ + 1 and then returned once more after n − n′ steps (with
probability P1(n − n′)). All the possibilities are covered by allowing n′ to vary
between 1 and n − 1. Summing over n′, we can therefore write an exact relation:

Ptrap(n) = δn,0 +
n∑

n′=0

P trap(n
′) P1(n − n′), (3.38)
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where the Kronecker symbol δn,0 accounts for the fact that the atom is in the trap
for n = 0. We have extended the summation from n′ = 0 to n′ = n, taking into
account the fact that Ptrap(n = 0) = 1 and P1(n = 0) = 0.

One then introduces two generating functions (discrete Laplace transforms), as:

Ld Ptrap(s) =
∞∑

n=0

e−sn Ptrap(n) (3.39)

and similarly for Ld P1. Multiplying eq. (3.38) by e−sn and summing over n leads
to:

Ld Ptrap(s) = 1 + Ld Ptrap(s)Ld P1(s) (3.40)

or

Ld P1(s) = 1 − 1

Ld Ptrap(s)
. (3.41)

We are interested in the long time behaviour of P̂(τ̂ ). Since the average time
between two steps is finite, it is obvious that the large τ̂ regime corresponds to
a large number of steps n. The information about large τ̂ is thus contained in
the small s behaviour of Ld P1(s). For small s, the region n < s−1 does not
contribute to leading order and the discrete sums over n can be replaced by integrals
(corresponding to usual Laplace transforms). This gives, using eq. (3.36):

Ld Ptrap(s) �
s→0

∫ ∞

0
dn e−sn Ptrap(n)

= 2ptrap√
2π
p

∫ ∞

0
dn

e−sn

√
n

=
√

2ptrap


p

1√
s

(3.42)

(we have used �(1/2) = √
π ). It then follows from eq. (3.41) that

Ld P1(s) �
s→0

1 − 
p√
2ptrap

√
s. (3.43)

Note that Ld P1(s = 0) = ∑∞
n=0 P1(n) = 1, which means that the total probability

of returning to the origin is equal to one. As discussed in the next chapter, the small
s behaviour of Ld P1(s) and the large n behaviour of P1(n) are linked. From eq.
(4.1) and eq. (4.14) of Chapter 4, one can deduce that:

P1(n) �
n→∞

1

2
√

2π


p

ptrap

1

n3/2
. (3.44)

We can now come to the time variable τ̂ . The probability density of returning to
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the trap for the first time at time τ̂ is related to the probability density P1(n) for the
number of steps through:

P̂(τ̂ ) =
∞∑

n=0

P1(n)P(τ̂ |n), (3.45)

where P(τ̂ |n) is the probability density that the n steps have taken a time τ̂ . Since
the average time between jumps is finite, the law of large numbers ensures that one
can replace, to leading order in the large τ̂ limit, P(τ̂ |n) by δ(τ̂ − nτ0) (τ0 is the
average jump time).

Using eq. (3.44), we finally obtain:

P̂(τ̂ ) = τ̂
1/2
b

2τ̂ 3/2
with τ̂b = 1

2π

(

p

ptrap

)2

τ0. (3.46)

This result, valid for large values of τ̂ , shows that the recycling time distribution is
very broad, with tails decreasing so slowly that the average value of the recycling
times diverges. This calls for the use of Lévy statistics, which we shall introduce
in the next chapter.

The presence of the ratio 
p/ptrap in expression (3.46) has an interesting interpretation.
When an atom, making steps of typical size 
p, comes back in the vicinity of p = 0,
it has a probability ptrap/
p of falling into the trap. Therefore, this atom must come
back typically 
p/ptrap times in the vicinity of p = 0 in order to have an appreciable
probability to return to the trap. The larger 
p compared to ptrap, the higher the
probability to ‘miss’ the trap when coming back to the vicinity of p = 0, and therefore
the larger the typical return time τ̂b to the trap.

Furthermore, the power 2 of (
p/ptrap)
2 can also be easily understood. It comes

from the fact that the mth first return path (m = 
p/ptrap) is typically m2 times longer
than the first return path (see the properties of Lévy sums, Section 4.3.1).

The return time distribution becomes even broader for higher dimensions, where
the atom on a random walk has difficulty relocating its initial site. In two dimen-
sions, P̂(τ̂ ) only decays as τ̂−1 log−2(τ̂ ), whereas in three dimensions, there is
a finite probability that the walk never returns, which corresponds to a non-zero
weight of P̂(τ̂ ) at τ̂ = ∞ [Wei94].

3.4.3 The Doppler model in one dimension

We now consider the case where the jump rate R(p) decreases for large values of
p. We bear in mind the experiments of frictionless one-dimensional VSCPT, where
the rate of fluorescence decreases as a consequence of the Doppler shift. We thus
specifically take the case described by eq. (3.9), corresponding to the Lorentzian
wing of the atomic fluorescence.
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An exact calculation of the tail of the probability distribution P̂(τ̂ ) actually turns
out to be possible in this case, and is presented in Appendix B. Only a simplified
argument, which reproduces the correct form of this tail, is given here.

We first notice that the probability distribution of the number of first return steps
P1(n) is a purely geometrical property, independent of the duration of each step, so
that the expression eq. (3.44) is still valid. The proportionality between the return
time and the number of steps is, however, no longer valid. During an n steps long
walk, the typical distance pn covered by the walk is 
p

√
n, each small interval of

size dp being visited typically ndp/(
p
√

n) times. The total time spent by the
walker outside the trap can thus be approximated as:

τ̂ (n) =
n∑

n′=1

1

R(pn′)
� dp

√
n


p


p
√

n/dp∑
i=1

1

R(pi = i dp)
(3.47)

since each small interval of size dp will contribute
√

n dp/
p times. In the small
dp limit, the sum can be replaced by an integral, and one finds using eq. (3.9):

τ̂ (n) �
√

n


p
τ0

∫ 
p
√

n

0

p2

p2
D

dp � τ0

3

(

p

pD

)2

n2. (3.48)

Note that we take the expression (3.9) for R(p) even when p0 < p < pD since this
region contributes negligibly to long τ̂ ’s and that the lower bound of the integral is
safely extended to zero because the integral is dominated by large p’s.

Finally, using the distribution P1(n) of the number of first return steps given by
eq. (3.44), we obtain the distribution of the first return times as

P̂(τ̂ ) = P1(n)
dn

dτ̂
� τ̂

1/4
b

4τ̂ 5/4
(3.49)

with now, up to prefactors of the order of one which we calculate in Appendix B,

τ̂b � τ0

p6

p4
trap p2

D

. (3.50)

This result shows that the distribution of recycling times has very broad tails, de-
caying as τ̂−5/4, i.e. still more slowly than in the case of a uniform one-dimensional
random walk. This is not surprising, since when the number of steps increases (so
that τ̂ also increases), the jump rate slows down because it explores larger values
of p where the Doppler effect plays a more important role. In this case also, the
average return time is infinite.

For intermediate times, the Doppler effect can be neglected and the relevant
jump rate is nearly constant. Therefore the τ̂−3/2 law describes the return time
distribution for times small compared to the diffusion time associated with pD (see
Section A.1.1.5, p. 153, and Section 8.3.2).
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3.4.4 The confined model: random walk with walls

We now consider the confined model, where the random walk in a D-dimensional
space is confined by reflecting walls on a sphere p = pmax. As for the other models,
we first begin by reasoning only on the number n of steps, regardless of the time
they take.

Since the motion is confined, the walk explores the sphere in a uniform way at
large n. For large n, the probability of finding the atom in the trapping volume after
n steps is thus simply equal to

Ptrap(n) =
(

ptrap

pmax

)D

, (3.51)

i.e. the ratio of the trapping volume to the volume of the total space. The discrete
Laplace transform of this function is:

Ld Ptrap(s) =
(

ptrap

pmax

)D 1

s
. (3.52)

We can then obtain the probability distribution P1(n) of the number of steps for
the first return times by using eq. (3.41), which is valid for all models. The Laplace
transform of P1(n) is thus

Ld P1(s) = 1 −
(

pmax

ptrap

)D

s. (3.53)

The fact that the small s expansion of Ld P1(s) starts with a term linear in s indicates
that the average number of steps needed to return to the origin is finite, and is
simply equal to the coefficient of s (see eq. (4.18)):

〈n〉 =
(

pmax

ptrap

)D

. (3.54)

We can now come to time variables. The average time τ0 between two successive
steps being finite, the average first return time τ̂ is now also finite (at variance with
the unconfined and Doppler models), with:

〈τ̂ 〉 = 〈n〉τ0. (3.55)

One thus finds: 〈
τ̂
〉 = τ0

(
pmax

ptrap

)D

. (3.56)

This result is important, since many experiments are carried out in a situation
where diffusion out of the trap is limited by a friction mechanism. It is thus worth
some further comments.
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• One could actually show [Wei94] that the full distribution P̂(τ̂ ) decays exponen-
tially for large τ̂ , as exp(−τ̂ /τmax), where τmax is the time needed for the random
walk to reach the wall:

τmax � τ0

(
pmax


p

)2

. (3.57)

Correspondingly, the result (3.56) is valid when the time is large enough so
that the system can explore all the accessible space, i.e. when the evolution
time is much larger than τmax. In the opposite limit, the results obtained for
the unconfined model remain valid.

• Notice that
〈
τ̂
〉

increases very quickly with the dimension of the space when
pmax 	 ptrap.

• It may appear surprising that the mean return time
〈
τ̂
〉

does not depend on the
length 
p of the steps in the momentum space, at variance with the correspond-
ing results for τ̂b in the unconfined model (cf. eq. (3.46)) and in the Doppler
model (cf. eq. (3.50)). One can interpret this result by noting that when the
length 
p of the individual step increases, the atom comes back faster close to
the origin, but the probability of missing the trap increases because the sampling
of space is coarser.

• There are several hidden assumptions in the above calculation, in particular
when we have identified the average time between jumps with τ0. This is not
obvious when ptrap � p0, since some jumps take place in the region where the
jump rate has already substantially dropped. One can show that if 
p 	 ptrap,
the average time between jumps remains of the order τ0 for D > α, while for
D < α, it is modified to:

〈τ 〉 � τ0

(
1 + D

α − D

pD−α
trap pα

0

pD
max

)
. (3.58)

3.4.5 Discussion

In this chapter, we have established some results on the statistical properties of the
recycling time τ̂ , i.e. the delay between two successive trapping periods. If the
random walk out of the trap is confined (corresponding to a realistic situation with
friction, favourable to the cooling mechanism), then the average recycling time

〈
τ̂
〉

is finite. For N sequences of trapping and recycling, the total time T̂N spent out of
the trap is then given, at large N , by the usual law of large numbers:

T̂N � N
〈
τ̂
〉
. (3.59)

On the contrary, if the random walk is not confined, the distribution of the
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recycling times is so broad that the average of τ̂ does not exist, and one cannot
write an equation such as eq. (3.59). It will be possible, however, to determine
the statistical properties of the total recycling time T̂N by use of Lévy statistics,
provided that one knows the asymptotic behaviour of the probability distribution
for the large values of τ̂ . In the case of a one-dimensional cooling scheme, we have
obtained the asymptotic distribution of the recycling times as

P̂(τ̂ ) �
τ̂	τ̂b

µ̂τ̂
µ̂

b

τ̂ 1+µ̂
(3.60)

in a form similar to eq. (3.32) for the distribution of the trapping times. We have
found that

µ̂ = 1
2 (3.61)

for the case of a homogeneous random walk (unconfined model, with a constant
delay between successive steps), and

µ̂ = 1
4 (3.62)

for the case of a jump rate decreasing as p−2 (Doppler model).
In higher dimensions, D > 1, the distribution of return times of an unconfined

random walk to the origin becomes extremely large, and the corresponding cooling
mechanism is very inefficient. The role of confining walls then becomes crucial.


